
Part A: Linear regression model

Consider the following linear regression model:

DIVi = β1 + β2 LDIVi + β3 EPSi + β4 ln(MCAPi) + β5 ln(OWNi) + εi,

εi
iid∼ N(0, σ2), σ > 0,

(1)

where i = 1, . . . , 517 represents the companies.

Question A.1: Explain briefly the economic content of this model (e.g., justify the choice

of explanatory variables).

Suggested answer

This model assumes a relationship between dividends and a few explanatory variables:

previous dividends, which give a signal of how likely a company is to pay out a

dividend in the current period, earnings per share, which are expected to explain

dividends (by definition, a dividend is a share of companies’ earnings paid out to

shareholders). Market capitalization, as a measure of corporate size, and the number

of unique shareholders, are likely to explain dividends as well (see, e.g., the agency

cost hypothesis of dividend theory), and are therefore included in the analysis. Some

variables are used in log, to allow a nonlinear effect on dividends, despite the linear

structure of the model.

Question A.2: Fit the linear regression model for the data described above using the

Gibbs sampler. You can use the code provided in class (gibbs_linreg.R, available

on Absalon under Files/code), your own code or a package of your choice. Justify

your choice of prior parameters.

[In this question, you are only asked to make inference, not to derive the sampler

or explain how the code is constructed.]

Suggested answer

The Gibbs sampler coded in class is run on the data to fit the linear regression

model. For the prior, we specify β ∼ N5(0, 100 × I5) and σ2 ∼ IG(2, 1), which are

rather noninformative prior distributions. A more informed analyst could decide to

incorporate some prior information, for example based on previous studies that can

give an idea of the sign and of the magnitude of the effect of the different explanatory

variables used. The normal prior would then be centered around this ‘prior guess,’

and the strength of the belief in this value would be adjusted through the variance of
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the prior.

We run the Gibbs sampler for 11,000 iterations and discard the first 1,000 as burn-in.

The corresponding code is provided in MAIN.R.

Question A.3: Summarize and explain the results. What can you conclude about the

determinants of dividends, both from a statistical and from an economic point of

view?

Suggested answer

Before summarizing the posterior distribution, convergence and mixing should be

assessed. A visual check reveals that after the burn-in of 1,000 iterations the posterior

distribution looks stationary, and mixing appears to be very good. This is confirmed

by a plot of the autocorrelations, which disappear after one lag only. The inefficiency

factors are close to 1 for all parameters, also indicating that the Gibbs sampler is

almost as good as iid sampling in this case. The sampled values of the parameters

can therefore be used for posterior inference.

The following table shows the posterior means, standard deviations and 95% highest

posterior density intervals of the parameters:

Mean SD [ 95% HPD ]

CONS -0.857 0.749 -2.299 0.575

LDIV 0.832 0.020 0.794 0.872

EPS 0.034 0.006 0.024 0.046

log(MCAP) -0.008 0.056 -0.122 0.099

log(OWN) 0.196 0.124 -0.050 0.439

SIGMA2 0.372 0.023 0.328 0.418

The results show evidence that lagged dividends and earnings per share have an impact

on dividends, while market capitalization and the number of unique shareholders do

not seem to play an important role. This can be seen from the 95% highest posterior

density intervals in the last two columns of the table, which provide credible intervals

for the corresponding parameters: the lower bounds of these intervals is far from zero

for the first two variables (this is especially true for lagged dividends), but zero is

included in the intervals of the last two parameters, indicating little evidence of an

impact of these two variables. Lagged dividends appear to be the best predictor of

current dividends, which makes sense from an economic point of view: some companies

are used to rewarding their shareholders on a regular basis, others are known for not

doing so.
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Part B: Extending the linear regression model

Some companies do not pay any dividends to their shareholders. This results in a partic-

ular structure of the dependent variable DIV that may be problematic for the use of the

linear regression model.

The goal of Part B is to investigate a potential misspecification of the model used in Part

A. That is, derive a model that is better specified for the problem at hand, and compare

the results from both approaches.

Question B.1: To what extent does the particular structure of the dependent variable

DIV create a problem for the use of the linear regression model? Show a pertinent

figure that illustrates the problem.

Suggested answer

The dependent variable DIV represents the dividends paid out. Since not all companies

pay out dividends, this variable contains zero values and is censored below zero. This

can be seen in the following figure showing the joint values of DIV and EPS, where

DIV clearly appears censored below zero, with a bunch of zero observations scattered

on the X-axis. There are 96 companies not paying out dividends in this data set (i.e.,

18.6% of the sample).

−20 −10 0 10 20 30 40

0
2

4
6

8
10

EPS

D
IV

The linear regression model does not take into account this censoring of the dependent

variable and treats the zero observations as regular data points, ignoring the under-
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lying mechanism that determines if companies pay out dividends or not. Ignoring

this particular feature of the data may therefore result in distorted results (biased

estimator).

Question B.2: One of your colleagues suggests you work with the following likelihood

function as an alternative to the linear regression model:

`(β, σ2;Y,X) =
N∏
i=1

[
1− Φ

(
X ′iβ

σ

)]1{Yi=0} [
1

σ
φ

(
Yi −X ′iβ

σ

)]1{Yi>0}

, (2)

where Φ(·) and φ(·) denote, respectively, the cumulative distribution function (CDF)

and the probability density function (PDF) of the standard normal distribution

N(0, 1), and 1{·} is the indicator function that is equal to 1 if the corresponding

condition is fulfilled, to 0 otherwise. The vector of regression coefficients is β =

(β1, . . . , β5)
′. The variable Yi corresponds to the dependent variable DIVi, and the

vector Xi contains the same explanatory variables as in eq. (1) for company i, where

the first entry of this vector is equal to 1 for the intercept term.

Specify the model that corresponds to this likelihood function. Explain how this

model directly accounts for companies not paying dividends, and at the same time

how it explains the amount of dividends paid out by companies who do.

Suggested answer

The likelihood function provided by your colleague clearly treats the censored obser-

vations (the zeros) differently from the observed dividends. The underlying model

can be obtained from the linear regression model specified in eq. (1), but treating the

dependent variable as a latent variable Y ?
i , such that

Y ?
i = X ′iβ + εi, εi

iid∼ N(0, σ2), (3)

where Xi =
(

1 LDIVi EPSi ln(MCAPi) ln(OWNi)
)′

. The variable Yi ≡ DIV is then

obtained from the following observational rule:

Yi =

Y ?
i if Y ?

i > 0 (dividend paid out),

0 if Y ?
i ≤ 0 (no dividend paid out),

(4)

which is equivalent to Yi = max{0, Y ?
i }.

The normality assumption on the error term provides the following conditional dis-
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tribution for the latent variable:

Y ?
i | Xi, β, σ

2 ind∼ N(X ′iβ, σ
2). (5)

The likelihood is constructed according to the observational rule specified in eq. (4),

which provides the following densities/probabilities for each of the two possible out-

comes:

Yi =

Y ?
i with density p(Y ?

i | Xi, β, σ
2),

0 with probability Pr(Y ?
i ≤ 0 | Xi, β, σ

2).

The first density is obtained from eq. (5):

p(Y ?
i | X, β, σ2) =

1

σ
φ

(
Y ?
i −X ′iβ
σ

)
=

1

σ
√

2π
exp

{
− 1

2σ2
(Y ?

i −X ′iβ)2
}
,

where φ(·) denotes the probability density function (PDF) of the standard normal

distribution N(0, 1).

The second probability is equal to:

Pr(Y ?
i ≤ 0 | Xi, β, σ

2) = Pr(X ′iβ + εi ≤ 0 | Xi, β, σ
2),

= Pr

(
εi
σ
≤ −X

′
iβ

σ
| Xi, β, σ

2

)
,

= Φ

(
−X

′
iβ

σ

)
,

= 1− Φ

(
X ′iβ

σ

)
,

where Φ(·) denotes the cumulative distribution function (CDF) of the standard normal

distribution, and the last line is obtained thanks to the symmetry of the normal

distribution.

Given the observational rule specified in eq. (4), these two cases can be combined to

produce the density function, which, expressed for the whole sample as the product

of the individual densities thanks to the independence assumption (for i = 1, . . . , N),

corresponds to the likelihood function specified in eq. (2) (a function of the model

parameters β and σ2).

This model is called a tobit model and takes into account the censoring of the depen-

dent variable DIV by distinguising its zero values from its positive values.

Question B.3: Explain why the likelihood function specified in eq. (2) is difficult to use
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directly for Bayesian inference. Propose an alternative solution that makes sampling

feasible.

Suggested answer

The likelihood specified in eq. (2) is a complicated function of the model parameters

β and σ2, as it relies on the CDF of the standard normal disitribution, which has

no closed-form solution. Therefore, it is impossible to find a conjugate prior or even

a non-conjugate prior that would provide a posterior distribution of a known family

that could easily be simulated.

As an alternative, it is possible to augment the likelihood with the latent variable Y ?

for the censored values of the dividends. By doing so, the well-known results about

the linear regression model can be applied to sample the regression coefficients β and

the variance σ2 based on eq. (3).

The corresponding augmented density is:

p(Yi, Y
?
i | Xi, β, σ

2) = p(Yi | Y ?
i , Xi, β, σ

2)p(Y ?
i | Xi, β, σ

2),

where p(Yi | Y ?
i , Xi, β, σ

2) is equal to 1 if dividends are positive and Yi = Y ?
i at the

same time (the latent variable is observed in that case), or if Yi is censored and the

corresponding latent variable Y ?
i is negative. It is equal to zero in all the other cases

(for instance, Y ?
i cannot be negative is Yi if nonzero).

A sampling scheme can then be implemented by simulating the latent variable for

the censored observations, and then sampling the remaining parameters β and σ2

conditional on the sampled Y ?.

Question B.4: Specify a prior distribution for the model parameters. Explain the con-

cept of conjugacy and use natural conjugate priors for your analysis, if such conju-

gate priors exist.

Suggested answer

A prior distribution needs to be assumed for the regression coefficients β and for the

variance of the error term σ2. A prior is said to be a natural conjugate if, multiplied

by the likelihood, it leads to a posterior distribution that belongs to the same family

of distribution.

In the latent variable model, the normal distribution is a conjugate prior for β and the
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inverse-gamma is a conjugate prior for σ2 (similarly to the linear regression model):

β ∼ N(b0, B0),

σ2 ∼ IG(c0, d0),

where b0 ∈ RK and B0 is a K×K covariance matrix (K is the number of explanatory

variables), and c0 > 0, d0 > 0. In our application we will use b0 = 0 and B0 = 100×IK ,

c0 = 2 and d0 = 1, which are rather noninformative priors.

Question B.5: Propose a Markov chain Monte Carlo (MCMC) sampler for this model.

Derive the (conditional) posterior distribution(s) used to update the model, and

provide details about the different steps of your MCMC sampler.

Suggested answer

The sampling scheme relies on data augmentation and simulates the latent variable for

the censored values of Y . The latent variable model is then a simple linear regression

model. The usual updating process can be applied to the regression coefficients and

to the variance of the error term, using Bayes’ theorem.

The conditional posterior distributions of β and σ2 are identical to those derived

in class for the linear regression model. They are reproduced here for the sake of

completeness.

Conditional posterior distribution of the regression coefficients. Using com-

pact form notation, such that Y ? is the vector of length N containing the latent vari-

able and X is the N ×K matrix containing the explanatory variables, the application

of Bayes’ theorem provides:

p(β | Y ?, X, σ2) ∝ p(Y | X, β, σ2) p(β)

∝ exp

{
− 1

2σ2
(β′X ′Xβ − 2β′X ′Y ?)

}
exp

{
−1

2

(
β′B−10 β − 2β′B−10 b0

)}
,

∝ exp

{
− 1

2

[
β′
(
X ′X

σ2
+B−10

)
︸ ︷︷ ︸

Bp

β − 2β′
(
X ′Y ?

σ2
+B−10 b0

)
︸ ︷︷ ︸

bp

]}
,

which corresponds to the kernel of the following normal distribution:

β | Y,X, σ2 ∼ N(B−1p bp, B
−1
p ).
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Conditional posterior distribution of the variance of the error term.

p(σ2 | Y,X, β) ∝ p(Y | X; β, σ2) p(σ2),

∝ (σ2)−
N
2 exp

{
− 1

2σ2

N∑
i=1

(Yi −X ′iβ)2

}
(σ2)−c0−1 exp

{
−d0
σ2

}
,

∝ (σ2)−
N
2
−c0−1 exp

{
− 1

σ2

(
d0 +

1

2

N∑
i=1

(Yi −X ′iβ)2

)}
,

providing the kernel of an inverse-gamma distribution:

σ2 | Y,X, β ∼ IG

(
c0 +

N

2
, d0 +

1

2

N∑
i=1

(Yi −X ′iβ)2

)
.

Conditional distribution of the latent variables. Since the latent variable is

equal to the observed dependent variable when this one is positive, it is only necessary

to derive the conditional distribution of Y ?
i when Yi is equal to zero. For each i =

1, . . . , N , we have:

p(Y ?
i | Yi = 0, Xi, β, σ

2) ∝ p(Yi = 0 | Y ?
i , Xi, β, σ

2)p(Y ?
i | Xi, β, σ

2),

∝ 1{Yi = 0}1{Y ?
i ≤ 0} 1

σ
φ

{
Y ?
i −X ′iβ
σ

}
,

where p(Yi = 0 | Y ?
i , Xi, β, σ

2) is obtained using the observational rule specified in

eq. (4): Since the sign of Y ?
i completely determines Yi when the latter one is equal to

0, this probability is equal to 1 if both conditions are fulfilled simultaneously.

The last expression shows that Y ?
i is sampled from the following truncated normal

distribution when the corresponding Yi is equal to 0:

Y ?
i | Yi = 0, Xi, β, σ

2 ind∼ TN(−∞,0](X
′
iβ, σ

2) if Yi = 0. (6)

Gibbs sampler for the tobit model. Initialize model parameters with starting

values β(0), σ2(0). Repeat the following steps until practical convergence, for t =

1, . . . , T :

(a) For each i = 1, . . . , N :

i. set Y ?
i = Yi if Yi > 0,

ii. otherwise if Yi = 0, sample Y ?
i from the truncated normal specified in eq. (6).

(b) Sample β(t) from p(β | Y ?, X, σ2(t−1)).

(c) Sample σ2(t) from p(σ2 | Y ?, X, β(t)).
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Question B.6: Write a computer program that implements your sampler. [You can

use the function gibbs_linreg() provided in class, available on Absalon under

Files/code, and extend it for your needs.]

Suggested answer

See function gibbs_tobit() in file gibbs_tobit.R.

Question B.7: Run your sampler on the data. Summarize the posterior results and

compare them to those obtained from the linear regression model. What are the

main differences? You may illustrate your answer with a figure and/or a table.

Suggested answer

Before summarizing the posterior distribution, it is necessary to check convergence

and mixing. This can be done visually using trace plots and autocorrelograms, which

show that the posterior distribution looks stationary and autocorrelations fade out

very quickly (indicating good mixing). These posterior draws can therefore be used

for posterior inference.
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The posterior is summarized in the following table, where the posterior means, stan-

dard deviations (SD) and 95% HPD intervals are displayed for each parameter:
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Mean SD [ 95% HPD ]

CONS -0.445 0.907 -2.167 1.368

LDIV 0.889 0.023 0.845 0.937

EPS 0.031 0.007 0.018 0.044

log(MCAP) -0.105 0.068 -0.240 0.026

log(OWN) 0.460 0.153 0.164 0.752

SIGMA2 0.495 0.035 0.428 0.565

The main differences between these posterior results and those obtained from the

linear regression model used previously appear more obvious when plotting the es-

timated posterior densities against each other, for each parameter (linear model in

black, censored model in blue, zero in vertical red line):
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It appears that when using the linear regression model and ignoring the censoring

of the dependent variable, the impact of the previous dividend (LDIV) and of the
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number of unique shareholders (OWN) are underestimated, while the impact of market

capitalization (MCAP) is overestimated. There is, however, no real difference for the

earnings per share ratio (EPS).

Interestingly, this improved specification of the model reveals more evidence from the

data that market capitalization (MCAP) plays a role in determining dividends: with the

linear regression model, the posterior probability that the corresponding coefficient

(β4) is negative was Pr(β4 < 0 | Y,X) = 55.87%, whereas with the censored model it

is equal to 94.02%.

Therefore, ignoring the censoring in the dependent variable distorts the results. It is

important to take into account the zero dividends to measure correctly the impact of

the different variables of interest on dividend payout.

Question B.8: According to the theory, the number of shareholders should be related

to the level of dividend payout (agency cost hypothesis of dividend theory).

Do you find evidence in the data supporting this theory? Justify your answer using

test statistics.

Suggested answer

This hypothesis can be tested by computing a credible interval for β5. The 95%

highest posterior density interval is provided in the previous table. The lower bound

of this interval for β5 is clearly larger than zero, indicating evidence in the data in

favor of this theory. This is confirmed by the computation of the posterior probability

Pr(β5 > 0 | Y,X), which is equal to 99.85%.

Part C: Accounting for sector heterogeneity

There might be large differences between sectors that explain dividend payout. Assume

you now have access to a variable SEC indicating to which sector each company belongs to.

This variable could, for instance, be the 11 categories of the Global Industry Classification

Standard (GICS) sector.

Question C.1. Propose an extension to the model used in Part B that allows to capture

heterogeneity across sectors. Your model should be able to account for differences

in levels, structural differences with respect to the explanatory variables, and dif-

ferences in unobserved heterogeneity across sectors.

Provide details about the model specification, including prior specification. Justify

the relevance of your specification.
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Suggested answer

Companies’ heterogeneity across sectors can be accounted for by specifying a hier-

archical model that adds more layers to the original model, in order to introduce

heterogeneity.

For example, differences in levels can be captured by random intercepts, structural

differences with respect to the explanatory variables by random regression coefficients,

and remaining differences in unobsered heterogeneity by adding a mixing parameter to

the variance of the error term. The resulting latent variable model would be expressed

as:

Y ?
i

ind∼ N(X ′iβSECi , λSECiσ
2
ε),

with a first hierarchical level:

σ2
ε ∼ IG(c0, d0),

λj
iid∼ IG(g0, h0), j = 1, . . . , card(SEC),

βj | b, B
iid∼ N5(b, B),

and a second hierarchical level:

b ∼ N5(b0, V0),

B ∼ IW5(ν0, S0),

for i = 1, . . . , N , where card(SEC) is the number of single industry sectors in the

variable SEC, NK(·, ·) denotes the multivariate normal distribution of dimension K,

and IWK(·, ·) denotes the inverse-Wishart distribution of dimension K.

The second level of hierarchy would allow to learn more about the structural differ-

ences, compared to the standard tobit model used in Part B, as we would obtain

different posterior distributions for the regression coefficients across sectors.

Question C.2. How would you modify your MCMC sampler derived in Part B to accom-

modate this/these new feature/s of the model? Describe briefly the modifications.

[Only sketch the resulting sampler, do not derive any posterior distributions].
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Suggested answer

The MCMC sampler would have additional steps to sample the parameters of the ad-

ditional layers: The parameters that are sector-specific, βj and λj, would be sampled

sequentially within each sector (i.e., card(SEC) substeps for each parameter, which

would be done in a loop, or vectorized). The hyperprior parameters b and B would

be sampled in an additional step, conditional on the sampled values of βj. All of

these substeps would be performed using simple Gibbs updates, as the corresponding

conditional distributions can all be derived in closed-form solutions and correspond

to known families.
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